Linear wave shaping:

The process where by the form of a non-sinusoidal signal is altered
by transmission through a linear network is called linear wave shaping.

LOW-PASS RC CIRCUIT :

+

|

Figure 1.1 The low-pass RC circuit.
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A low-pass circuit transmits only low-frequency
signals and attenuates or stops high-frequency
signals

At zero frequency, the reactance of the
capacitor is infinity (i.e. the capacitor acts as an
open circuit) so the entire input appears at the
output

So the output is the same as the input, i.e. the
gain is unity

As the frequency increases the capacitive reactance decreases and so the output
decreases. At very high frequencies the capacitor virtually acts as a short-circuit

and the output falls to zero.



Sinusoidal Input:
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Figure 1.2 (a) Laplace transformed low-pass RC circuit and (b) its frequency response.

The gain versus frequency curve of a low-pass circuit excited by a
sinusoidal input is shown in Figure 1.2(b).
This curve is obtained by keeping the amplitude of the input sinusoidal

signal constant and varying its frequency and noting the output at each
frequency.

At low frequencies the output is equal to the input and hence the gain is
unity. As the frequency increases, the output decreases and hence the gain
decreases.

The frequency at which the gain is |/V2 (= 0.707) of its maximum value is called the
cut-off frequency



For a low-pass circuit, there is no lower cut-off frequency. It is zero itself

The upper cut-off frequency is the frequency (in the high-frequency range) at
which the gain is 1/V2 . i-e- 70.7%, of its maximum value. The bandwidth of the

low-pass circuit is equal to the upper cut-off frequency 2 itself.

For the network shown in Figulre 1.2(a), the magnitude of the steady-state gain A is

A=v‘,(s)= Cs - 1 _ .o 1
V,(s) R+ 1+ RCs 1+ joRC 1+ j2mfRC

Cs
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Step-Voltage Input:

A step signal is one which maintains the value zero for all times t < 0, and maintains
the value V for all times t > 0. The transition between the two voltage levels takes

place att =0

Thus, in Figure 1.3(a), v,= 0 immediately before t = O (to be referred to as time t = 0-)
and vi =V, immediately after t= 0 (to be referred to as time t = 0+).

if the capacitor is initially uncharged, when a step input is applied, since the voltage
across the capacitor cannot change instantaneously, the output will be zero at t = 0,
and then, as the capacitor charges, the output voltage rises exponentially towards the
steady-state value V with a time constant RC

= - (@) (b)

Figure 1_'1 -Fhe:lowspass. KL cleul. Figure 1.3 (a) Step input and (b) step response of the low-pass RC circuit.
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Let V' be the |n|t|al voltage across the capacitor. Writing KVL around the loop

v (e) = RiC) + — j' i) dr

Differentiating this equation,

dav; (&) — R di(r) +.—1—f(z)
gr r "
dv, (1)
i 4 = — =[}
Since vA ) V. ot
0= g 20 . 1in
dr [ 34

Taking the Laplace transform on both sides,

0= Risf(s)= HO0O")] + é I(x)

1
oy = I ——
(0") {J}I[I+RC]

The initial current f(0") is given by

1(0*)y = st o
R
I(s) = I({}} =
s'-l-—— R(s+u——
and V. (s) = Vi(s) — Ks)R = —':- _ {V_V;R - g_""_";'
R{s+—-—RC s+—RC

Taking the inverse Laplace transform an both sides,

v () = V — (V — V' )eVRC



where V' is the initial voltage across the capacitor (Viyg) and V is the final voltage (Vgn)
to which the capacitor can charge.

S0, the expression for the voltage across the capacitor of an RC circuit excited by a step
input is given by

Vo) = Vena = Viaat = Vi)™

If the capacitor is initially uncharged, then v (1) = V(I - ¢



Expression for rise time

When a step signal is applied, the rise time t, is defined as the time taken by
the output voltage waveform to rise from 10% to 90% of its final value:

It gives an indication of how fast the circuit can respond to a discontinuity in
voltage.

Assuming that the capacitor in Figure 1.1 is initially uncharged, the output
voltage shown in Figure 1.3(b) at any instant of time is given by

v, (0) = V(1 —~ e"RC)
At t = t;, v(£) # 10% of V =0.1V
0.1V = V(1 — e”'V/RG)

e~ 'WRC — 0.9 or VRC = 1.11

1
0.9

£, = RC In (1.11) = 0.1RC
At t =ty v(H) = 90% of V = 09V

0.9V = V(1 — e™2/R%

e-—leRC = 0.1 or el‘szC -

0.1 i
t, = RC In 10 = 2.3RC
Rise time, 7, = 1, — 1, = 2.2RC

This indicates that the rise time t, is proportional to the time constant RC of the
circuit. The larger the time constant, the slower the capacitor charges, and the
smaller the time constant, the faster the capacitor charges.



Relation between rise time and upper 3-dB frequency
We know that the upper 3-dB frequency (same as bandwidth) of a low-pass circuit is

1 1
= - or RC=-——
2 2nRC 2nf,
Rise time, ¢, = 2.2RC = 24 = U = L
irf, f BW

Thus, the rise time is inversely proportional to the upper 3-dB frequency.

The time constant (t= RC) of a circuit is defined as the time taken by the output to rise
to 63.2% of the amplitude of the input step. It is same as the time taken by the output

to rise to 100% of the amplitude of the input step, if the initial slope of rise is
maintained.



Pulse Input

The pulse shown in Figure 1.4(a) is equivalent to a positive step followed by a delayed
negative step as shown in Figure 1 .4(b).

So, the response of the low-pass RC circuit to a pulse for times less than the pulse
width tp is the same as that for a step input and is given by v,(t) = V(I — e’/FC),

The responses of the low-pass RC circuit for time constant RC » tp, RC smaller than t,
and RC very small compared to t, are shown in Figures 1.5(a), 1.5(b), and 1.5(c)
respectively.

If the time constant RC of the circuit is very large, at the end of the pulse, the output
voltage will be V (t) = V(1 - e't?/RC) and the output will decrease to zero from this value
with a time constant RC as shown in Figure 1.5(a).

Observe that the pulse waveform is distorted when it is passed through a linear
network. The output will always extend beyond the pulse width tp, because whatever
charge has accumulated across the capacitor C during the pulse cannot leak off
instantaneously.
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Figure 1.4 (a) A pulse and (b) a pulse in terms of steps.
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Figure 1.5 Pulse response for (a) RC >> z,, (b) RC < 7,,, and (c) RC << 1,,.

If the time constant RC of the circuit is very small, the capacitor charges and discharges very
quickly and the rise time tr will be small and so the distortion in the wave shape is small.

For minimum distortion (i.e. for preservation of wave shape), the rise time must be small
compared to the pulse width tp. If the upper 3-dB frequency f2 is chosen equal to the reciprocal
of the pulse width fp, i.e. if f2 = 1/tp then fr = 0.35tp and the output is as shown in Figure 1.5(b),
which for many applications is a reasonable reproduction of the input. As a rule of thumb, we

can say:



A pulse shape will be preserved if the 3-dB frequency is approximately
equal to the reciprocal of the pulse width.

Thus to pass a 0.25 u.s pulse reasonably well requires a circuit with an upper
cut-off frequency of the order of 4 MHz.

Square wave input

A square wave is a periodic waveform which maintains itself at one
constant level V’ with respect to ground for a time T1 and then changes abruptly to
another level V", and remains constant at that level for a time T2, and repeats itself at
regular intervals of T = T1 + T2. A square wave may be treated as a series of positive
and negative steps. The shape of the output waveform for a square wave input
depends on the time constant of the circuit.



Square-Wave Input
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Figure 1.6  Response of a low-pass RC circuil 10 a square wave input: (a) square-wave input wave form,
(b) output waveform for RC << T, {c) output waveform for RC = T, and (d) cutput waveform for
RC>>T.



In Figure 1.6(c), the equation for the rising portion is
=V = (V' = Vy)etRC
where V; is the voltage across the capacitor at = 0, and V' is the level to which the

capacitor can charge.
The equation for the falling portion is

Vo = R vl)t-u = T\\RC

where V| is the voltage across the capacitor at 1 = T} and V" is the level to which the
capacitor can discharge.

Setting vy, =V, atr =T,
Vi=V - (V- Vel = V(1 - TG 4 T
Setting vp = V3 at = I+ T,
Fj = V" - [Vn o Vl}t—ﬂ‘ﬂTg—T[lME - Vﬂ’“ P E—TEME} + v‘le-rﬂﬂf
Substituting this value of V, in the expression for V),
vl = w“ 2 E-Tp’RC} 2 [Vﬂ{]_ e-?';fﬂ‘{‘} + VIE-TIMC]E-TU‘RC

. O | o ) Sk
e L 1— ¢ (h* BVRC

Similarly substituting the value of V; in the expression for. V,,

i R v T T e R
{ E-{T' + T ¥RC

'r": =



For a symmetrical square wave with zero average value,

7=, =% and V'= uv"=%+ S0, Vy will be equal to -V,
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1.1.5 Ramp input
When a low-pass RC circuit shown in Figure 1.1 is excited by a ramp input, i.e.

vir) = o, where & is the slope of the ramp
we have, Vi = &
n Jz
From the frequency domain circuit of Figure 1.2(a), the output is given by

1
V,(s) = V(s) —2— =

r+ L & 1+RCs RC f[” _1_]
Cs RC
Using Partial Fractions

_a |-(RO® RC _ (RCY

RC 5 £ = R

RC
i.e. V()= i) + %— + ghL
§ s 1
54—
RC

Taking the inverse Laplace transform on both sides,

Vt) = - ORC + ot + GRCe™C
=0t - RO) + oRCe™

If the time constant RC is very small, ¢RC < 0

vl = oft - RC)
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Figure 1.7 Response of a low-pass RC circuit for a ramp input for (a) RC/T << 1 and (b) RC/T >> 1.
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Expanding e in to an infinite series in #RC in the above equation for v,(1),

2 . 3
a(t- RC)+ aRC 1-——5—+ e l— et l+‘..
RC (RC | 2! \RC| 3!
2
at~aRC+aRC-ar+-E{-—~...
2RC

w afr
2RC RC| 2

vo.(t)

2

This shows that a quadratic response is obtained for a linear input and hence the circuit acts as an integrator for RC/T » 1.

The transmission error et for a ramp input is defined as the difference between the input and the output divided by
the input at the end of the ramp, i.e.att=T.
For RC/T « 1,

ai B - (ot - oRC)
: ot a3
oRC RC 1



THE LOW-PASS RC CIRCUIT AS AN INTEGRATOR

If the time constant of an RC low-pass circuit is very large, the capacitor
charges very slowly and so almost all the input voltage appears across the
resistor for small values of time.

Then, the current in the circuit is vi(t)IR and the output signal across C is

I _lLev@® 1
v, () = Ej.‘(” dr = E_[ o dr = — i@ ar

Hence the output is the integral of the input, i.e. if v;(r) = at, then

ot?
2RC

v, (2) =

As time increases, the voltage drop across C does not remain negligible compared
with that across R and the output will not remain the integral of the input.

If the time constant of an RC low-pass circuit is very large in comparison with the time
required for the input signal to make an appreciable change, the circuit acts as an
integrator.

A criterion for good integration in terms of steady-state analysis is as follows: The
low-pass circuit acts as an integrator provided the time constant of the circuit RC >
15T, where T is the period of the input sine wave.



An RC integrator converts a square wave into a triangular wave. Integrators are almost
invariably preferred over differentiators in analog computer applications for the following
reasons:

1. It is easier to stabilize an integrator than a differentiator because the gain of an
integrator decreases with frequency whereas the gain of a differentiator increases with
frequency.

2. An integrator is less sensitive to noise voltages than a differentiator because of its
limited bandwidth.

3. The amplifier of a differentiator may overload if the input waveform changes very
rapidly.

4. It is more convenient to introduce initial conditions in an integrator.



THE HIGH-PASS RC CIRCUIT

.4 1€ ?- 9+ At zero frequency the reactance of the capacitor is
I infinity and so it blocks the input and hence the
vi1) @ § R 20 output is zero.
~ e 1. This capacitor is called the blocking capacitor and this
: = circuit, also called the capacitive coupling circuit, is
Figure 1.30 The high-pass RC circuit. used to provide dc isolation between the input and the
output.

This circuit attenuates low-frequency signals and allows transmission of high-frequency
signals with little or no attenuation, it is called a high-pass circuit.



Sinusoidal Input

1/Cs

+ T | & 7 + |
s 1p--------=
: : 0.707F - - - -
(a)

(b)

Figure 1.31 (a) Laplace transformed high-pass circuit and (b) gain versus frequency plot.

For a sinusoidal input v i , the output signal vO increases in amplitude with

increasing frequency.
The frequency at which the gain is 1/V2 of its maximum value is called the

lower cut-off or lower 3-dB frequency.

For a high-pass circuit, there is no upper cut-off frequency because all high
frequency signals are transmitted with zero attenuation.
Therefore, f2 — f1. Hence bandwidth B.W=f2 - fj =c0

Expression for the lower cut-off frequency
For the high-pass RC circuit shown in Figure 1.31 (a), the magnitude of the

steady-state gain A, and the angle G by which the output leads the input are
given by



Vi gl 1
Cs RCs
Putti | [OX L >
ing s = jw, A=, 3 = 3
Y 7o - Jir2:*::fi‘?(?.‘
1Al = : and @ = —tan-1 —— 1+
: 1 2 2w fRC
1+ ———
[ZyrfRCJ
At the lower cut-off frequency f, |A| = 1//2
1 1

e (omme]

Squaring and equating the denominators,
1 1
—_—— =1 iie. = —
27 fiRC ) 5 27RC

This is the expression for the lower cut-off frequency of a high-pass circuit.



Relation between f1 and tilt

The lower cut-off frequency of a high-pass circuit is f; = 1 / 2nRC. The lower cut-off
frequency produces a tilt. For a 10% change in capacitor voltage, the time or pulse
width involved is

t = 0.1RC = PW
PW |
—— = (.1 = Fractional tilt
RC |
_ PW
. - . — — 2 " PW
_Fracnonal tilt RC Tfi

This equation applies only when the tilt is 10% or less.



Step Input

When a step signal of amplitude V volts shown in Figure 1.32(a) is applied to the high-pass
RC circuit of Figure 1.30, since the voltage across the capacitor cannot change

instantaneously the output will be just equal to the input att =0 (fort <0, v,=0 and v, = 0).
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RC large
v;‘(‘) @ §R Vo(f) \ - RC small
RC very small
— & ® —
T — ¢ !
0
(a) ol (b)

Figure 1.30 The high-pass RC circuit.

Figure 1.32 (a) Step input and (b) step response for different time constants.

Later when the capacitor charges exponentially, the output reduces exponentially with the
same time constant RC. The expression for the output voltage for t > 0 is given by
v,(t) = Ve — (1?}; — 1;-!_)5_:;—:.-"&-:
=0—(0—-V)eTrc =V e t/RE
V finat IS Z€ro and V ..., is V for RC high pass circuit
Figure 1.32(b) shows the response of the circuit for large, small, and very small
time constants. For t > 5r, the output will reach more than 99% of its final value. Hence
although the steady state is approached asymptotically, for most applications we may

assume that the final value has been reached after 5f. If the initial slope of the exponential
is maintained, the output falls to zero in a time t = T.



Pulse Input
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Figure 1.30 The high-pass RC circuit. Figure 1.33 Pulse response for (a) RC >> t,, (b) RC comparable to 7, and {¢) RC << ¢,

A pulse of amplitude V and duration tp shown in Figure 1.4(a) is nothing but the sum
of a positive step of amplitude V starting at t = 0 and a negative step of amplitude V
starting at tp as shown in above Figure



Square-Wave Input

A square wave shown in Figure 1.34(a) is a periodic waveform, which maintains
itself at one constant level V with respect to ground for a time T1 and then changes
abruptly to another level V" and remains constant at that level for a time T2, and
then repeats itself at reqular intervals of T =T1 + T2. A square wave may be treated
as a series of positive and negative steps.

The shape of the output depends on the time constant of the circuit. Figures 1.34(b),
1.34(c), 1.34(d), and 1.34(e) show the output waveforms of the high-pass RC circuit

under .steady-state conditions for the cases (a) RC» T, (b) RC>T, (c) RC- T, and (d) RC
« T respectively.

When the time constant is arbitrarily large (i.e. RC/T1 and RC/T2 are very very large in
comparison to unity) the output is same as the input but with zero dc level. When RC >

T, the output is in the form of a tilt. When RC is comparable to T, the output rises and
falls exponentially.

When RC « T (i.e. RCIT\ and RC/T2 are very small in comparison to unity), the
output consists of alternate positive and negative spikes.



for any periodic input waveform under steady-state conditions, the average level
of the output waveform from the high-pass circuit of Figure 1.30 is always zero
independently of the dc level of the input. The proof is as follows:

&
+ T } € - T +
v Cxe ¥ § R v, (D)
L ] b

Figure 1.30 The high-pass RC circuit.

V; (f) = -é— Ii(t) dt + V(,('t)

1 e V(D)
-zl aine (v w-22)
Differentiating,

dv,(t) _ v,@) % dv,(t)
dt RC dt
Multiplying by dr and integrating this equation over one period 7,

=T : _ t=T VO(I) dt t=7T
'.[zmo ghi )= J':=o RC ® J-:=0 v, (£)

ik,
_ RC
Under steady-state conditions, the output waveform (as well as the input signal) is repetitive
with a period 7T so that v, (7) = v,0) and v(7T) = v, (0). ' '

i.e. vi(T) — v(0) = ;vo(r)dt + v, (T) — v, (0)



Under steady-state conditions, the output waveform (as well as the input
signal) is repetitive with a period T so that vO(T) = vO(0) and vi T) = vi(0).

Hence

7 ]
j v,(dt = 0.
0

%Tilt: %Tilt is defined as decay in the amplitude of the output voltage wave due to
the input voltage maintaining constant level.
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Figare 1.34  (a) A square wave input, (b) output when RC is arbitrarily large, (c) output when RC > T,
{d) output when RC is comparable to 7, and (e) output when RC << T.



Under steady-state conditions, the capacitor charges and discharges to the same

voltage levels in each cvcle. So the shape of the outout waveform is fixed.
For 0 <t < T, the output is given by v, = Ve ¢

Att=T, v, =V =VeTRC
For T) < t < T| + T, the output is v, = V,e(-TVRC
Att =T, + Ty, vy =V, = Ve lRC
Also W -~ V, =V and V, -V, =V

From these relations V;, V/, V, and V, can be computed.

Expression for the percentage tilt

%Tilt: %Tilt is defined as decay in the amplitude of the output voltage wave due to
the input voltage maintaining constant level.

We will derive an expression for the percentage tilt when the time constant RC of the
circuit is very large compared to the period of the input waveform, i.e. RC » T. For a
symmetrical square wave with zero average value



Vis=Voie V=1Vl Vi==Vy,ie Vi=IVilband T, =T, =

|~

The output waveform for RC >> T is shown in Figure 1.35. Here,

V)= VeTRC  and V) = V,e-TRAC

V, - V=V
ie. Vi = VoehC o V) 4+ VieTRRC 0 ¥
Vv
; Vi=e—— o V=V/(l+eTR0)
e ' 14 eTRRC ¢
-t - — p-TRRC
gotile, P = Am W 3 100% = A= M Lonom= L2 C T i 200%
_'i-: 1,:-1{[+,m.ec} | 4 g-TiRRC
2
v, = Ve VRC
V‘ 1 1§ .
mé.\‘:_;;,; A———
S
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2 voy = Wye UTIVRC

Figure 1.35 Linear tilt of a symmetrical square wave waen RC >> T,

T
When the time constant is very large, i.e. RC << 1

e 3N I e
l+1+[*lL2+(2RC] .

2

* 200%

C

x 200%

X x100%
2RC

A« 100%
r

is the lower cut-off frequency of the high-pass circuit.



Ramp Input

A waveform which is zero for t < 0 and which increases linearly with time for t > 0
is called a ramp or sweep voltage.

When the high-pass RC circuit is excited by a ramp input v i (t) = at, where a is
the slope of the ramp, then

o
Vi(s) = 2

From the Laplace transformed circuit of Figure 1.31(a),

Vo) = Wi —= 2 K&
R+~  1+RGs
Cs
1 $ I
S| $+— S+—
RC RC

Taking the inverse Laplace transform on both sides,

v,(t) = aRC(1 - €™*'RC)



For times t which are very small in comparison with RC, we have
. _ oV ' Y
v,() = aRC|[1-<1+ i + il l+ i J—+
| RC) {RC) 2! {RC)3!
2
o P
RC 2(RC)?

or? t
= Qt——— =0t | ~——
2RC ( ZRC]
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! ? Output
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Figure 1.36 Response of the high-pass circuit for a ramp input when (a) RC >> T and (b) RC << T.



Transmission error:

t
at-ar(1—-—-—}
A 2RC —

at 2RC

t=T

where f, = is the lower 3-dB frequency of the high-pass circuit.

2 RC

THE HIGH-PASS RC CIRCUIT AS A DIFFERENTIATOR

When the time constant of the high-pass RC circuit is very very small, the capacitor
charges very quickly; so almost all the input v,(0 appears across the capacitor and
the voltage across the resistor will be negligible compared to the voltage across the
capacitor. Hence the current is determined entirely by the capacitence.

Then the current

: dv (1)
ih=C p

and the output signal across R is

dv(1)

‘ dr

Thus we see that the output is proportional to the derivative of the input

V() =RC—=



The high-pass RC circuit acts as a differentiator provided the RC time,
constant of the circuit is very small in comparison with the time required for the
input signal to make an appreciable change.

The derivative of a step signal is an impulse of infinite amplitude at the occurrence
of the discontinuity of step.

The derivative of an ideal pulse is a positive impulse followed by a delayed
negative impulse, each of infinite amplitude and occurring at the points of
discontinuity.

The derivative of a square wave is a waveform which is uniformly zero except, at
the points of discontinuity.



MULTIVIBRATORS

Multi means many vibrator means oscillator. A circuit which can oscillate at a number
of frequencies is called a multivibrator. Basically there are three types of multivibrators:

1. Bistable multivibrator — consists of two stable states
2. Monostable multivibrator - consists of one stable states and one quasi stable states
3. Astable multivibrator- consists of two quasi stable states or No stable states

A bistable multivibrator has got two stable states, a monostable multivibrator has got
only one stable state (the other state being quasi stable) and the astable multivibrator
has got no stable state (both the states being quasi stable).

The stable state of a multivibrator is the state in which the device can stay permanently.
Only when a proper external triggering signal is applied, it will change its state. Quasi
stable state means temporarily stable state. The device cannot stay permanently in this
state.
After a predetermined time, the device will automatically come out of the quasi stable
state.



A bistable multivibrator is the basic memory element. It is used to perform many
digital operations such as counting and storing of binary data. It also finds extensive
applications in the generation and processing of pulse type waveforms.

The monostable multivibrator finds extensive applications in pulse circuits. Mostly it
is used as a gating circuit or a delay circuit.

The astable circuit is used as a master oscillator to generate square waves. It is often
a basic source of fast waveforms. It is a free running oscillator. It is called a square
wave generator. It is also termed a relaxation oscillator.

BISTABLE MULTIVIBRATOR

A bistable multivibrator is a multivibrator which can exist indefinitely in either of its
two stable states and which can be induced to make an abrupt transition from one
state to the other by means of external excitation. In a bistable multivibrator both
the coupling elements are resistors (dc coupling). The bistable multivibrator is also
called a multi, Eccles-Jordan circuit (after its inventors), trigger circuit, scale-of-two
toggle circuit, flip-flop, and binary. There are two types of bistable multivibrators:

1. Collector coupled bistable multivibrator

2. Emitter coupled bistable multivibrator

There are two types of collector-coupled bistable multivibrators:

1. Fixed-bias bistable multivibrator

2. Self-bias bistable multivibrator



A FIXED-BIAS BISTABLE MULTIVIBRATOR

VBB

Fixed bias binary with collector catching diodes



- Standard specifications
In the cut-off region, i.e. for the OFF state

Vee (cut-off) : < 0 V for silicon transistor
< - 0.1 V for germanium transistor

In the saturation region, i.e. for the ON state

Vpg (sat) : 0.7 V for silicon transistor

0.3 V for germanium transistor
Veg (sat) : 0.3 V for silicon transistor

0.1 V for germanium transistor

The above values hold good for n-p-n transistors. For p-n-p transistors the above values
with opposite sign are to be taken.
Test for saturation

To test whether a transistor is really in saturation or not evaluate the collector current ic and
the base current iy independently.

If ig > ig (min), where ig (min) = ic/hgg (Mmin) the transistor is really in saturation.
If ig € ig (min), the transistor is not in saturation.

Test for cut-off

To test whether a transistor is really cut-off or not, find its base-to-emitter voltage. If Vpg
is negative for an n-p-n transistor or positive for a p-n-p transistor, the transistor is really
cut-off. '



COMMUTATING CAPACITORS

We know that the bistable multivibrator has
got two stable states and that it can remain in
either of its two stable states indefinitely. It
can change state only when a triggering signal
such as a pulse from some external source is
applied. When a triggering signal is applied,
conduction has to transfer from one device to
another. The transition time is defined as the
interval during which conduction transfers
from one transistor to another.

The reason for this transition time is—even though the input signal at the base of a
transistor may be transferred to the collector with zero rise time, the signal at the
collector of the transistor cannot be transferred to the base of the other transistor
instantaneously.

This is because the input capacitance C; present at the base of the transistor makes the
R\-R2 attenuator act as an uncompensated attenuator and so it will have a finite rise
time, tr = (R1//R2)Ci. The transition time may be reduced by compensating this
attenuator by introducing a small capacitor in parallel with the coupling resistors R1and
R2 of the binary as shown in Figure 4.21.









THE EMITTER-COUPLED BINARY (THE SCHMITT TRIGGER CIRCUIT)

Figure 429 An emittcr-couplcd binary. 0



Derivation of expression for UTP

The upper triggering point UTP is defined as the input voltage V, at which the
transistor Q; just enters into conduction.

To calculate V, , we have to first find the current in Q2 when Q1 just enters into
conduction. For this we have to find the Thevenin's equivalent voltage V and the
Thevenin's equivalent resistance tfB at the base of Q2, where

| . Ry (R¢ +.R.)
and Rp = Ry Il (Rey + R) = —2~—LL 711
R, + Roy + R, B =MW Re =+ &y R, + Re; + R,

It is possible for Q2 to be in its active region or to be in saturation. Assuming that Q2
is in its active region



Writing KVL around the base loop of Q2,

V’ = IBZRB — -VBEZ —_ ]BZ(hFE + I)RE 2 ]
Vi~ Vers

i =
V' -V, hep + 1) R,
Hence Ven = fpoffps + 1) Rg = ( pE2) (Mpp + 1) Rp
' RB + RE (hFE +1)
et VEni = Ven = Veng
Since Q, is just at cut-in, Ig; = 0 and Vgg, = V),

Vi = Vgni + Veer + IiRs = VEn '+ Vi

If Rg(hgp + 1) >> Ry, the drop across Rg may be neglected compared to the drop across
Rg. -
Ven = V' — Vpe2

and - Vi= V' — Vag + V



Since Vyl is the voltage from base to emitter at cut-in where the loop gain just

exceeds unity, it differs from VBE2 in the active region by only 0.1 V for either
Ge or Si.

Vl ="V - 0.1

Derivation of expression for LTP



Derivation of expression for LTP

The lower triggering point LTP is defined as the input voltage V2 at which the
transistor Q2 resumes conduction.

Vi can be calculated from the circuit shown in Figure 4.33 which is obtained by
replacing Vcc, rCl, R1 and R2 of Figure 4.29 by Thevenin's equivalent voltage VTH
and Thevenin's equivalent resistance R at the collector of Q 1, where

and R = RCI”(R[ + RZ) = RCI(R1+R2)
Rert B+ Ry Rc + R, + R,




The voltage ratio from the collector of Qi to the base of Q2 is

a = RZI(RI + Rz)

The input signal to Q1 is decreasing, and when it reaches V2 then Q2 comes out of

cut-off _
aVeny — Vyp — g + IgDRg = 0

where ‘ - Veng = Vg — IR

1
aVry ~ alcjR - VTZ ~ Ipj (1 'i“;“'} Re=10

FE
- aV, — V.
or _ ICI fas - ih Yzl
aR + Rg (1 +—)
' hFE
Ay =l e G Ry oy
: 1 ’
Let - - Rel1+— | = Ry
: hFE .
V-V
Ie, = Iz

T aR+ Ry



Therefore from Figure 4.33,

Since hgg is a large number, R =~ Rg and usually fj
. IFE

v,

Vee:r + Ici

i

Vi = Vag + (V'

Ig:Rs + Vps: + (gt + IcRg

(%5
Reil+ +
N Peg

I
Vee: + Icy

RS“E

heg |

e

<< RE

R
aR + Rv

”‘Vﬂ}



MONOSTABLE MULTIVIBRATOR

A monostable multivibrator has got only one permanent stable state, the other
state being quasi stable. Under quiescent conditions, the monostable multivibrator
will be in its stable state only.

A triggering signal is required to induce a transition from the stable state to the
guasi stable state

Once triggered properly the circuit may remain in its quasi stable state for a time
which is very long compared with the time of transition between the states, and
after that it will return to its original state.

No external triggering signal is required to induce this reverse transition.

In @ monostable multivibrator one coupling element is a resistor and another
coupling element is a capacitor.

it generates a rectangular waveform which can be used to gate other circuits, it is
also called a gating circuit

it generates a fast transition at a predetermined time T after the input trigger, it is
also referred to as a delay circuit.



THE COLLECTOR COUPLED MONOSTABLE MULTIVIBRATOR

g
—- —t

The transition from the stable state to the quasi-stable state takes place at t = 0,
and the reverse transition from the quasi-stable state to the stable state takes
placeatt=T.

The time T for which the circuit is in its quasi-stable state is also referred to as the
delay time and also as the gate width, pulse width, or pulse duration. The delay
time may be varied by varying the time constant = RC.



Expression for the gate width T of a monostable multivibrator neglecting the
reverse saturation current I,

Figure 4.42(a) shows the waveform at the base of transistor Q2 of the monostable
multivibrator shown in Figure 4.41.

Fort <0, Q2is ON and so vB2 = VBE(sat). At t = 0, a negative signal applied brings
Q2 to OFF state and Q1 into saturation.

A current |, flows through Rc of Q1 and hence vcl drops abruptly by I,R_ volts and
so vB2 also drops by I,R_ instantaneously. So at t = 0, vB2 = VBE(sat) — IR

For t > 0, the capacitor charges with a time constant RC, and hence the base
voltage of Q2 rises exponentially towards Vcc with the same time constant. At t =
T, when this base voltage rises to the cut-in voltage level Vy of the transistor, Q2
goes to ON state, and Q1 to OFF state and the pulse ends

In the interval 0 < t < T, the base voltage of Q2, i.e. vB2 is given by

ver = Vee ~ (Ve = {Vag(sat) — LR:De™"



VB2 4

fels
Ql OFF : Ql ON ] Ql OFF
Q, ON 1 Q5 OFF Q5 ON
L] [ P
0 ' _
'
]
IR |
1
1
1
1
v elf—rryr —h-.!
r=0

Voltage variation at the base of Q2 dur-ing the quasi-stable state

But [;}Rc = Vo — Veg(sat) (because at ¢ = 07, vy = Ve and at 1 = 0%, vy = Veg(sat))
vz = Ve — Voo — (Vis(sat) — (Voo = Veg(sat)}le™”
' = Ve ~ [2Vee - {Vag(sat) + Veglsa)}le”
At | f=T, v =V,
Vy= Voo — 12Viee = {Vieg(sat) + VBE(sat)}]g*T/T

TP = 2V = [Veg (sat) + Vg (sat)]
Vee =Yy

i.e.



In [2 ( 7 - Ve (sat) -2"- Vg (sat) )]

H

£
T

Veg (sat) + Vi (sat)
Vee — >

Vee — V,

i.e. _ T TIn 2 + 7 In

Normally for a transistor, at room temperature, the cut-in voltage is the average
of the saturation junction voltages for either Ge or Si transistors

Veg (sat) + Vig (sat)

Vy, = 5
Neglecting the second term in the expression for T
| T=17In2
ie. . T=(R+R)CI2=069R + R)C
T=R+R,

Where R, is output impedance of conducting transistor

but for a transistor in saturation Ro« R.
Gate width, T=0.693RC



Waveforms of the collector-coupled monostable multivibrator

Q, OFF ! Q, ON ! Q OFF
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Waveforms at the collectors and bases of the collector-coupled monostable multivibrator. (a)
at the base of Q2, (b) at the collector of Q1, (c) at the collector of Q2, and (d) at the base Q1



The stable state:
For t < 0, the monostable circuit is in its stable state with Q2 ON and Q1 OFF

Since Q2 is ON, the base voltage of Q2 is vB2 = VBE2(sat) and the collector voltage of
Q2 is vC2 = VCE2(sat).
Since Q1 is OFF, there is no current in Rc of Q1 and its base voltage must be negative.

Hence the voltage at the collector of Q1 is vC1 = VCC

The voltage at the base of Q1 using the superposition theorem is

vpy = — V + Veps(sat) ——=—
Bl BB R+ R, CE2 R + R,




The quasi-stable state:

A negative triggering signal applied at t = 0 brings Q2 to OFF state and Q1 to ON state.

A current |, flows in Rc of Q1. So, the collector voltage of Q1 drops suddenly by /,R.
volts.

Since the voltage across the coupling capacitor C cannot change instantaneously, the
voltage at the base of Q2 also drops by I,R., where |,R. = Vcc -VcE2(sat)- Since Q1 is
ON,

vg = Vpg(sat) and v = Vg (sat)

R
Rl + VBE_l(sat) £

R+ R R+ R

Also, vgy = Vppo(sat) - [Re and v = Vi

In the interval 0 < t < T, the voltages Vic1, VB1 and Vc2 remain constant at their values
att=20,

but the voltage at the base of Q2, i.e. vB2 rises exponentially towards Vcc with a time
constant, t=RC, until at t = T, vB2 reaches the cut-in voltage V, of the transistor



Waveforms fort > T:

At t = T, reverse transition -takes place. Q2 conducts and Q1 is cut-off.

The collector voltage of Q2 and the base voltage of Q1 return to their voltage
levels for t< 0.

The voltage vcl now rises abruptly since Q1 is OFF. This increase in voltage is
transmitted to the base of Q2 and drives Q2 heavily into saturation.

Hence an overshoot develops in vB2 at t = T*, which decays as the capacitor
recharges because of the base current.

The magnitude of the base current may be calculated as follows.

Replace the input circuit of Q2 by the base spreading resistance rBB in series with the
voltage VBE(sat) as shown in Figure.

Let I’B be the base current at t = T*. The current in R may be neglected compared to
I'B.



From the below Figure

VE;E = Ifg."éB -+ VBE(sat) and VC = VCC —_ I{;RC — V’BE
' Rq R >> R
% e
i 1oF B,
Vec < ,
7% - BB :
B YBE
TVBE(Sat) l
= < |

Equivalent circuit for calculating the overshoot at base B2 of Q2
The jumps in voltages at B2 and C1 are, respectively, given by

0 = V:BE - V?’ = Iér;;B. + VBE(Sat) —-VT and & = VCC = VCE(Sﬂt) H IéRC

Since C1 and B2 are connected by a capacitor C and since the voltage across the capacitors
cannot change instantaneously, these two discontinuous voltage changes 6 and 6' must be
equal. Equating them

Iyrgg + Vgg(sat) — V, = Voo — Veg(sat) - TgRc

‘RC + rf;B

i

7

vB2 and vcl decay to their steady-state values with a time constant T (RC + rf;B) C



Monostable multivibrator as a voltage-to-time converter (as a pulse width modulator)

|
I cC VB2 4
| R i ek 3
) e
Re Re e
Vpplsat) Vuplsat)
A k

_‘l..r!
0 i
; {, R 1
i
\
- [

v =0
— BB —

(a) (b} :
Figure shows the circuit diagram of a monostable multivibrator as a voltage- to-time
converter.

By varying the auxiliary supply voltage V, the pulse width can be changed. It
can be seen that the resistor R is connected to the auxiliary voltage source V instead
of to Vcc.

The waveform of the voltage vB2 at the base of Q2 is shown in Figure 4.45(b).
In the interval 0 < 1 < T, vgy 1s given by

vpr = Ve — (Vf — Vip) €7F

V - [V - (Vge(sat) — [1Re)]e™?

Vo2



But I} Rec = Ve — Vg (sat) : _
vgs = V ~ [V — {Vgg(sat) ~ (Voo — Veg (sat)}] @
=V ~ [V + Voo ~ (Vge(sat) + Veg(sat))le™"
AtI:T, vBEZV}'
V,= V — [V + Voo ~ (Vpp(sat) + Vg (sat)ie”

ST V¥ Voo — (Vg (sat) + Vg (sat))
V- V},

Neglecting the junction voltages and the cut 1n voltage

V + V¢
v.

7 = T log

= T log(l+££c—]
1%

Thus the pulse width is a function of auxiliary voltage V. For this reason the monostable
multivibrator shown in Figure is termed a voltage-to-time converter. It is also called a
pulse width modulator.



THE EMITTER-COUPLED MONOSTABLE MULTIVIBRATOR
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Waveforms of emitter-coupled monostable multivibrator
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ASTABLE MULTIVIBRATOR
As the name indicates an astable multivibrator is a multivibrator with no permanent

stable state. Both of its states are quasi stable only.

It cannot remain in any one of its states indefinitely and keeps on oscillating
between its two quasi stable states the moment it is connected to the supply.

It remains in each of its two quasi stable states for only a short designed interval of
time and then goes to the other quasi stable state.

No triggering signal is required. Both the coupling elements are capacitors (ac
coupling) and hence both the states are quasi stable.

It is a free running multivibrator. It generates square waves.
It is used as a master oscillator.



THE COLLECTOR-COUPLED ASTABLE MULTIVIBRATOR
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Expression for the frequency of oscillation of an astable multivibrator

Consider the waveform at the base of Q; shown in Figure 4.54(d). At ¢ = 0,

| vg) = Vag(sat) - hRc
But | IZRC = VCC = VCE(SBI)
CAtt= 0, Vg = VBE(SBI) = Voo + Vg(sat)

For 0 < t < T}, vp; rises exponentially towards Vqc given by the equation,

V= V= (- e

var = Voo - [Vee - (Vg(sat) - Voo + Veg(sat)le™™, where 7, = RiC,
At ¢ = T}, when vy, rises to V., Q; conducts

Vy = Voo - Ve - (Vaglsat) + Veg(sat))le "1

Vi (500) + Vg (sat)}
)

or | ETlmlCl —



Vep(sat) + Vg (sat) ]

2

VCC_Vy' '

[ Vg (sat) + VBE(sat)]
VCC G i
T,

Il

RICI In2 + ._R]C] In

At room temperature for a transistor,

Vg (sat) + Vg (sat)
2
T; = R;CI In 2 = 0.693R;C;

V:,,z

On similar lines considering the waveform of Figure , we can show that the time 72
for which Q2 is OFF and Q1 is ON is given by |
T2 - RECQ In2 = 0693R2C2

s+ 1I;= 0693(R[C1 e RzCz)

_— _ 1 _ 1
The frequency of oscillation /' = — 0.693(R,C, + R, Cy)

IfRI=R2=R, andC1=C2=C, thenTI=T2=T/2

T =2 x 0.693RC = 1386RC  and  f= ——

1.386RC
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Figure 4.54 Waveforms at the bases and collectors of a collector-coupled astable multivibrator.
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(a) Waveform at the base of Q, and (b) waveform at the
base of Q2 for the circuit of Figure

Figure shows the circuit diagram of an astable multivibrator used as a voltage-to-
frequency converter.

The frequency can be varied by varying the magnitude of the auxiliary voltage
source V.

Now the supply voltage is VCC only, but the voltage level to which the coupling
capacitors C1 and C2 try to charge is not Vcc but V.



ForO<t<T1, Qlis OFF and Q2 is ON. From the base waveform shown in Figure the
voltage at the base of Q1 is given by

gy = V- 1{V- (VBE(SM) - hRo)je ™
= V= [V~ {Vggsat).— (Ve - Veg(sat)}]e TV

At2 =Ty, vy = V,, and the transistor Q; conducts
PO V= V- [V 4 Voo - (Vaglsat) + Veglsat))e

JTUT - (V+ Vo) - (‘VBE (sat) + V cE (sat))

or

Neglecting the junction voltages and the cut-in voltage of the transistor

V+ V. V
SR = wel 18 G, "y 4 ny S CC

v ' V




T, = 5, In 1+f§9—} = R,C, 1n(1+f§9-]
vV 14
Similarly, considering the waveform at the base of Q, shown in Figure 4.56(b)

. Ty = R,C, In(l-!--‘:’f—:;g-}
The petiod, T=Ty + T, = (RiC + RCyY In [1+-—-~fo‘3]
If o - Ri=R;=R, C;=C,=C,thenT, =T, = T2

T = 2RC In(1+l%‘f—)

- =



The astable multivibrator with vertical edges

=

The collector-coupled astable multivibrator produces the output waveforms at
the collectors of Q1 and Q2 with rounded edges .
An astable multivibrator which can generate collector waveforms with vertical

edges can be obtained by the addition of two diodes and two resistors as shown
in Figure above.

If Q2 is driven OFF, its collector voltage rises immediately to Vcc. so that D2 is
reverse biased and Q1 goes into saturation, The saturation base current of Q1
passes through C,and R, rather than through R.. Since Iz no longer passes through
Rc, the collector waveform now has vertical edges as desired.



The astable multivibrator which does not block

R

(e
&

For the astable multivibrator, if the supply voltage is increased slowly from zero
to its full value Vcc, both the transistors may go into saturation simultaneously
and remain in that state. This blocked condition does not occur if the voltage is
applied suddenly. A circuit which cannot block is shown in Figure above.



The gated astable multivibrator

Figure 4.59 shows the circuit diagram of a gated astable multivibrator. This is
obtained by adding a transistor Q3 in series with the emitter of Q| or Q2 of the
collector-coupled astable multivibrator. This gated astable multivibrator can start
or stop oscillating at definite times.

pre

=

The input v, to Q3 can assume one of two values. One level is chosen such that Q3 is
OFF. With Q3 OFF, Q1 will be OFF, and Q2 will be ON and the circuit is quiescent, i.e.
it does not oscillate. The second binary level is chosen such that Q; is driven into
saturation. Hence, at any instant (say t - 0) that this voltage is applied, Q, goes ON
and Q2 is driven OFF.



THE EMITTER-COUPLED ASTABLE MULTIVIE

The emitter-coupled multivibrator
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Figure 4.64 Waveforms of the emitter—éoupled astablé multivibrator.
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Advantages

1. It is inherently self-starting.

2. The collector of Q2 where the output is taken may be loaded heavily even capacitively.
3. The output is free of recovery transients.

4. Because it has an isolated input at the base of Q1, synchronization is convenient.

5. Frequency adjustment is convenient because only one capacitor is use

Disadvantages

1. This circuit is more difficult to adjust for proper operating conditions.

2. This circuit cannot be operated with T\ and T2 widely different.

3. This circuit uses more components than does the collector-coupled circuit.



TIME BASE GENERATORS

A time-base generator is an electronic circuit which generates an output voltage
or current waveform, a portion of which varies linearly with time.

Ideally the output waveform should be a ramp

Time-base generators may be :

voltage time-base generators

or current time-base generators.

A voltage time-base generator is one that provides an output voltage
waveform, a portion of which exhibits a linear variation with respect to time.

A current time-base generator is one that provides an output current
waveform, a portion of which exhibits a linear variation with respect to time.

Applications of time-base generators:
such as in CROs, television and radar displays,  in precise time measurements,
and in time modulation.

The most important application of a time-base generator is in CROs. To display the
variation with respect to time of an arbitrary waveform on the screen of an oscilloscope

it is required to apply to one set of deflecting plates a voltage which varies linearly with
time.

Since this waveform is used to sweep the electron beam horizontally across the screen it
is called the sweep voltage and the time-base generators are called the sweep circuits.



GENERAL FEATURES OF A TIME-BASE SIGNAL
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(a) General sweep voltage and (b) saw-tooth voltage Waveforms

Figure 5.1(a) shows the typical waveform of a time-base voltage. As seen the
voltage starting from some initial value increases linearly with time to a
maximum value after which it returns again to its initial value.

The time during which the output increases is called the sweep time and the
time taken by the signal to return to its initial value is called the restoration time,
the return time, or the flyback time.

However, in some cases a restoration time which is very small compared with the
sweep time is required.

If the restoration time is almost zero and then the waveform is known as Saw-tooth
voltage shown in in figure. b

The waveforms of the type shown in Figures 5.1 (a) and (b) are generally called sweep
waveforms even when they are used in applications not involving the deflection of an
electron beam



The deviation from linearity is expressed in three most important ways:
1. The slope or sweep speed error, e,
2. The displacement error, e,
3. The transmission error, e,

The slope or sweep-speed error, es

An important requirement of a sweep is that it must increase linearly with time, i.e.
the rate of change of sweep voltage with time be constant.
This deviation from linearity is defined as

difference in slope at beginning and end of sweep

Slope or sweep-speed error, e, = e
initial value of slope

dvg

=0 dr

vy
dar

t=7;

n
dt

=0



The displacement error, e,

Another important criterion of linearity is the maximum difference between the

actual sweep voltage and the linear sweep which passes through the beginning and
end points of the actual sweep.

The displacement error e, is defined as

maximum difference between the actual sweep voltage and the linear sweep
_ which passes through the beginning and end points of the actual sweep
T amplitude of the sweep at the end of the sweep time

€4

= (vs_v;)max B
V

)

v, is the actual sweep and v's is the linear sweep

The transmission error, e,

When a ramp signal is transmitted through a high-pass circuit, the output falls away
from the input as shown in Figure 5.2(b). This deviation is expressed as transmission
error et, defined as the difference between the input and the output divided by the
input at the end of the swee ’
p f p . V-V,
L= v’
. . . lT
where as shown in Figure 5.2(b), V's is the input and Vs is the output at the end of the
sweep, i.e. att =TS
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Figure 5.2 (a) Sweep for displacement error and (b) sweep for transmission error.

If the deviation from linearity is small so that the sweep voltage may be
approximated by the sum of linear and quadratic terms in t, then the above three

errors are related as

€ €

8 4

e, =2e,= 8¢,

which implies that the sweep speed error is the more dominant one and the
displacement error is the least severe one.



METHODS OF GENERATING A TIME-BASE WAVEFORM
In time-base circuits, sweep linearity is achieved by one of the following methods

1. Exponential charging. In this method a capacitor is charged from a supply voltage
through a resistor to a voltage which is small compared with the supply voltage.

2. Constant current charging. In this method a capacitor is charged linearly from a
constant current source. Since the charging current is constant the voltage across the
capacitor increases linearly.

3. The Miller circuit. In this method an operational integrator is used to convert an input
step voltage into a ramp waveform.

4. The Phantastron circuit. In this method a pulse input is converted into a ramp. This is a
version of the Miller circuit.

5. The bootstrap circuit. In this method a capacitor is charged linearly by a constant
current which is obtained by maintaining a constant voltage across a fixed resistor in series
with the capacitor.

6. Compensating networks. In this method a compensating circuit is introduced to improve
the linearity of the basic Miller and bootstrap time-base generators.

7. An inductor circuit. In this method an RLC series circuit is used. Since an inductor does
not allow the current passing through it to change instantaneously, the current through the
capacitor more or less remains constant and hence a more linear sweep is obtained.



EXPONENTIAL SWEEP CIRCUIT

- 0 ;
{a) (b)

e |

Figure 5.3(a) shows an exponential sweep circuit. The switch S is normally closed
and is open att = 0. So for t > 0, the capacitor charges towards the supply voltage V
with a time constant RC.

The voltage across the capacitor at any instant of time is given by

V() = V(1 — e7"RC)



Slope or sweep speed error, es

We know that for an exponential sweep circuit of Figure 5.3(a),

v(t) = V(1 - ¢R)

Rate of change of output or slope is

Cdy, = 0 — V(e ¥RCy —1 - Ve ''RC
dr o RC RC
dv,|  dy, V. e TRC
dt dat -
Slope error, e, = i =T, - RC RC
= dv, v
Ldt |, RC
=1— e—TJJRC

=1—-[1— % +(
| RC

~T Y I
— ...
RC )} 2

For small Ts, neglecting the second and higher order terms



*  RC
Also, v, = V(1 — ¢ R

At | t=T, v,=V,

Neglecting the second and higher order terms

V. T,
V=V L, or. —& =
RC |4 RC
: V. T,
Hence - = - =g
Vv RC

So the smaller the sweep amplitude compared to the sweep voltage, the smaller
will be the slope error.



The transmission error, e, :

From Figure 5.2(b),

Atr=T, v, = V, = V(1 - e T+/FC)
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The initial slope, 2 = ———
dar |,_g C
o ops . . . S | %
If the initial slope is maintained at ¢t =7, v, = V=T, X ——
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The displacement error, e

From Figure 5.2(a), we can see that the maximum displacement between the actual

sweep and the linear sweep which passes through the beginning and end points of

the actual sweep occursatt=TS/2
T,

At = 5 =
2

The actual sweep vs is given by
v, = V(1 - ¢"RC)

Atr= v, = V(1 — e7Ts72RC,

2 .
=V[1-{1- % 4 ~ % ~—1-+...
2RC 2RC /) 2!
i 2
vl L (L)1
LZRC RC) 8

At =T, | Ivc::V.'r
V, = V(1 - ¢ T/RC)
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The displacement error ed is given by

N W . . S v
2RC 8 (RO)? 2) RC 2(RC)?

ey = (v.': _ v;)max _— 3
V. 2
a AT FEYs
- | RC \RCj 2

T2 T2

& 5

5[_ 4RO T Z(RCY ]
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(Y
_ 1|4\ RC o e T o Es
2 |- T, 8 RC 8
RC

eS

=g

. e e

This proves that &g = 8‘ = -Z‘- or e, = 2e, = Bey

If a capacitor C is charged by a constant current I, then the voltage across Cis It/C. Hence
the rate of change of voltage with time is given by Sweep speed = 1/C



UNUJUNCTION TRANSISTOR

As the name implies a UJT has only one p-n junction, unlike a BJT which has two p-n
junctions

It has a p-type emitter alloyed to a lightly doped n-type material as shown in Figure 5.4(a).

There are two bases: base B1 and base B2, base B1 being closer to the emitter than base
B2. The p-n junction is formed between the p-type emitter and n-type silicon slab.

Originally this device was named as double base diode but now it is commercially
known as UJT.

The equivalent circuit of the UJT is shown in Figure 5.4(b).

Rg; is the resistance between base Bl and the emitter, and it is basically a variable
resistance, its value being dependent upon the emitter current i.. Rg, is the resistance
between base B, and the emitter, and its value is fixed.
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(a) (b} (c)
Figure 5.4 (a) Construction of UJT, (b) equivalent circuit of UJT, and (c) circuit when iE = 0.

If IE =0, due to the applied voltage VBB, a current i results as shown in Figure 5.4(c).

- Ve
Ry, + Rp; :
V.= iRy = —Ve8__p o __Re . Thenio —2istermed the s stond off o and i enote by 1, Theefr
Ry, + Ry Rp| + Ry RBI+RBZ
— RBI ; —
] = Ror + R’ when i = 0.

Vi = MVgs
From the equivalent circuit, it is evident that the diode cannot conduct unless
the emitter voltage Ve = V?' + Vi where V,is the cut-in voltage of the diode

This value of emitter voltage which makes the diode conduct is termed peak
voltage and is denoted by VP.



Vp - V}, + Vl
Vp = V-!, + T’VBB since V] = nVBB

It is obvious that if VE < VP, the UJT is OFF and if VE > VP, the UJT is ON.
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Figure 5.5 (a) Symbol and (b) input characteristics of UJT.

The symbol of UJT is shown in Figure 5.5(a). The input characteristics of UJT (plot of VE
versus i) are shown in Figure 5.5(b).

The main application of UJT is in switching circuits wherein rapid discharge of
capacitors is very essential. UJT sweep circuit is called a relaxation oscillator.

Applications of UJT

UJTs are most prominently used as relaxation oscillators. They are also used in Phase
Control Circuits. In addition, UJTs are widely used to provide clock for digital circuits,
timing control for various devices, controlled firing in thyristors, and sync pulsed for
horizontal deflection circuits in CRO.



SWEEP CIRCUIT USING UJT
Many devices are available to serve as the switch.

Figure 5.6(a) shows the exponential sweep circuit in which the UJT serves the purpose
of the switch.

In fact, any current-controlled negative-resistance device may be used to discharge the
sweep capacitor.

; vy ¥py
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Figure 5.6 (a) UJT sweep circuit and (b) output waveform across the capacitor
The supply voltage Vyy and the charging resistor R must be selected such that the
load line intersects the input characteristic in the negative-resistance region.

The UJT is OFF. The capacitor C charges from V,, through R. When it is charged to the peak
value V, the UJT turns ON and the capacitor now discharges through the UJT.



When the capacitor discharges to the valley voltage V, ,tne UJT turns OFF, and again
the capacitor starts charging and the cycle repeats.

The capacitor voltage appears as shown in Figure 5.6(b).
The expression for the sweep time Ts can be obtained as follows.

For O<t< TS"'. VvV = Vyy — (VYY — V) G_HRC
At ' t =T, Vo=v,=Vp
Vp = Vyy — (Vyy — Ve To/RC
i.e. . (VYY = Vv)é_TszC = VYY — Vp
| Vyy — V.
O els/RC — LYY %
Vov = Ve
V- s
T, = RC In __Y_‘i’___f_Y_
. _ 1
Frequency of oscillation f = =
where : T =T, + T, is the period
| | 1 _ .
= = -—1-, neglecting 7, since T, << T,.
T+1, T,
1 1 :
f= v v = v since Vy << Vyvy
RC In[M) RCln(——‘iL*) '
oy =¥ , Vyy = Vfi

: _
|
RC n(l - VF‘(VYYJ



'V, + n Vyy, if Vg = Vyy

71 . Vyvy neglecting V, as V, is << Vyy

V.
or £.

= 17, the intrinsic stand off ratio
Vyy '

Substituting 17 for (Vp/Vyy), we get
i

RCln( 1 J
-7

For good linearity, V= Vp - Vi must be much smaller than V= Vyy - Vy. Since usually Vp >>
VV and VYY o> Vv, we I'ﬂQlliI'C that Vp << Vyy. Also, VYY b VBB'
When Vy is very small,

T T T
er=_— and Ed'—"‘"l‘f""'
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MILLER AND BOOTSTRAP TIME-BASE GENERATORS—BASIC PRINCIPLES

The linearity of the time-base waveforms may be improved by using circuits
involving feedback.

Figure 5.10(a) shows the basic exponential sweep circuit in which S opens to form
the sweep.

A linear sweep cannot be obtained from this circuit because as the capacitor charges,
the charging current decreases and hence the rate at which the capacitor charges, i.e.
the slope of the output waveform decreases.

A perfectly linear output can be obtained if the initial charging current | = V/R is
maintained constant. This can be done by introducing an auxiliary variable generator
v whose generated voltage v is always equal to and opposite to the voltage across the
capacitor as shown in Figure 5.10(b).

AN > AN +
R l R
S
g G P cI=  vc
< ot N — l—
z . Y

@) (b)

Figure 5.10 (a) The current decreases exponentially with time and (b) the current
remains constant



The circuit of Figure 5.10(b) suppose the point Z is grounded as in Figure 5.11(a).

A linear sweep will appear between the point Y and ground and will increase in the
negative direction.

Let us now replace the fictitious (imaginary) generator by an amplifier with output
terminals YZ and input terminals XZ as shown in Figure 5.11(b).

Since we have assumed that the generated voltage is always equal and opposite to the
voltage across the capacitor, the voltage between X and Z is equal to zero. Hence the
point X acts as a virtual ground. Now for the amplifier, the input is zero volts and the
output is a finite negative value.
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Figure 5.11 (a) Figure 5.10(b) with Z grounded and (b) Miller integrator circuit.

This can be achieved by using an operational integrator with a gain of infinity. This is
normally referred to as the Miller integrator circuit or the Miller sweep.



Suppose that the point Y in Figure 5.10(b) is grounded and the output is taken at Z. A
linear sweep will appear between Z and ground and will increase in the positive
direction.

Let us now replace the fictitious generator by an amplifier with input terminals XY and
output terminals ZY as shown in Figure 5.12. Since we have assumed that the generated
voltage v at any instant is equal to the voltage across the capacitor vc, then vO must be
equal to v, and the amplifier voltage gain must be equal to unity. The circuit of Figure
5.12 is referred to as the Bootstrap sweep circuit.
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The Miller sweep

peclp

| | [E&J v’
. . R
vt = 0") = Av, = vo(r = 0%) = Av, =
l1-A+ -2
Vit = 07 = e
R1AI

if RO is taken into account, vO(t = 0+) is a small positive value and still it will be a

negative-going sweep with the same terminal value. Thus the negative-going ramp is
preceded by a small positive jump



The bootstrap sweep
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THE TRANSISTOR MILLER TIME-BASE GENERATOR

The transistor Miller time base generator circuit is the popular Miller integrator circuit
that produces a sweep waveform. This is mostly used in horizontal deflection circuits.

Let us try to understand the construction and working of a Miller time base generator
circuit.

Schmitt
gate
generator

1

L b

45V

Ne
g

|

a

. . Run-down
: %Rl %R R sweep
output
v e Vep=45V } -10V _ = 45V
N VRN ; RN P : N : /
F .
Switch . Timing circuit Emitter follower Amplificr Emiter follower

Figure 5.17 A transistorized Miller time-base generator.
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The Miller time base generator circuit consists of a switch and a timing circuit in the initial
stage, whose input is taken from the Schmitt gate generator circuit. The amplifier section
is the following one which has three stages, first being an emitter follower, second an
amplifier and the third one is also an emitter follower.

An emitter follower circuit usually acts as a Buffer amplifier. It has a low output
impedance and a high input impedance. The low output impedance lets the circuit drive
a heavy load. The high input impedance keeps the circuit from not loading its previous
circuit. The last emitter follower section will not load the previous amplifier section.
Because of this, the amplifier gain will be high.

The capacitor C placed between the base of Q; and the emitter of Q; is the timing
capacitor. The values of R and C and the variation in the voltage level of Vg; changes the
sweep speed. The figure below shows the circuit of a Miller time base generator.



When the output of Schmitt trigger generator is a negative pulse, the transistor Q, turns
ON and the emitter current flows through R;. The emitter is at negative potential and the
same is applied at the cathode of the diode D, which makes it forward biased. As the
capacitor C is bypassed here, it is not charged.

The application of a trigger pulse, makes the Schmitt gate output high, which in turn, turns
the transistor Q, OFF. Now, a voltage of 10v is applied at the emitter of Q, that makes the
current flow through R; which also makes the diode D reverse biased. As the transistor Q,
is in cutoff, the capacitor C gets charged from V,; through R and provides a rundown
sweep output at the emitter of Q;. The capacitor C discharges through D and transistor Q,
at the end of the sweep.

Considering the effect of capacitance C,, the slope speed or sweep speed error is given by

V :
€y = —~ I—A-i-—i-fi+£
1% R, C

Applications
Miller sweep circuits are the most commonly used integrator circuit in many devices.
It is a widely used saw tooth generator.



THE TRANSISTOR BOOTSTRAP TIME-BASE GENERATOR

A bootstrap sweep generator is a time base generator circuit whose output is fed
back to the input through the feedback. This will increase or decrease the input

impedance of the circuit. This process of bootstrapping is used to achieve constant
charging current.
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Before the application of gating waveform at t = 0, as the transistor gets enough base drive
from V. through R;, Q, is ON and Q, is OFF. The capacitor C, charges to V. through the
diode D.

Then a negative trigger pulse from the gating waveform of a Monostable Multivibrator is
applied at the base of Q; which turns Q, OFF. The capacitor C, now discharges and the
capacitor C, charges through the resistor R. As the capacitor C, has large value of
capacitance, its voltage levels (charge and discharge) vary at a slower rate. Hence it
discharges slowly and maintains a nearly constant value during the ramp generation at the
output of Q,.

During the ramp time, the diode D is reverse biased. The capacitor C, provides a small
current |, for the capacitor C, to charge. As the capacitance value is high, though it
provides current, it doesn’t make much difference in its charge. When Q, gets ON at the
end of ramp time, C, discharges rapidly to its initial value. This voltage appears across V.
Consequently, the diode D gets forward biased again and the capacitor C, gets a pulse of
current to recover its small charge lost during the charging of C,. Now, the circuit is ready
to produce another ramp output.

The capacitor C2 which helps in providing some feedback current to the capacitor C1 acts
as a boot strapping capacitor that provides constant current.

Advantage
The main advantage of this boot strap ramp generator is that the output voltage ramp is
very linear and the ramp amplitude reaches the supply voltage level.



Current Time base Generator

A time base generator that provides an output current waveform that varies linearly
with time is called as a Current Time base Generator.

Let us try to understand the basic current time base generator.

A basic simple RC time base generator or a Ramp generator or a sweep circuit consists
of a common-base configuration transistor and two resistors, having one in emitter and
another in collector. The V. is given to the collector of the transistor. The circuit
diagram of a basic ramp current generator is as shown here under.

A transistor connected in common-base
configuration has its collector current vary linearly
with its emitter current. When the emitter current is
held constant, the collector current also will be near
constant value, except for very smaller values of
collector base voltages.

As the input voltage V, is applied at the base of the 0 ¢y
transistor, it appears at the emitter which produces ¢

the emitter current i; and this increases linearly as vV, vy, i
increase from zero to its peak value. The collector Re=>
current increases as the emitter current increases, 3
because i. is closely equal to ip.
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The input and output waveforms are as shown below.
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Sampling Gates

Sampling Gates are also called as Transmission gates, linear gates and selection
circuits, in which the output is exact reproduction of the input during a selected
time interval and zero otherwise

The time interval for transmission is selected by an externally impressed signal
called gating signal

These are two types

Unidirectional

Bidirectional

Sampling gates are different from the logic gates. In logic gates can be any number of
Inputs and outputs and output is not exactly reproduction of the input.

Output of sampling gate is exactly reproduction of input (whatever the shape of input
square, sine, pulse etc ) during selected period.



Principle of operation of a linear gate
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Fig. Linear gates

In {a) the switch closes for transmitting the signal whereas in (b) the switch is open

for transmission to take place.

Unidirectional Gate

IL )
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input

S unidirectional sampling gates are those
+ ém : which transmit signals of only one

L

control
input

polarity(i.e,. either positive or negative)
_VI | Gate or

|

+ Gating signal determines transmission period
The gating signal is also known as control pulse, selector pulse or an enabling pulse. It
is a negative signal, the magnitude of which changes abruptly between -V2 and-V1.
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The advantages of Unidirectional sampling gate

It is simple

There is very little time delay through gate

The gate draws no current in its quiescent conditions
The gate can be easily extended

Disadvantages

There’s interaction between control and input signals (V. and V)

As the number of inputs increase, the loading on control input increases.

Output is sensitive to control input voltage V, (upper level of V)

Only one input should be applied at one instant of time.

Because of slow rise time of the control signal, the output may get distorted, if the
input signal is applied before reaching the steady state.



Unidirectional sampling gate more than one input

)

Signal 1 ©

Q":—H.l-

Signal 2 o©

c D R,
= =
Control =

signal ©
g
Va
When the control input is given,
At V.=V, which is during the transmission period, both the diodes D, and D, are forward biased.
Now, the output will be the sum of all the three inputs.
VO=VS1+VS2+VC
For V, = Ov which is the ideal value,
VO=VS1+VS2
Here we have a major limitation that at any instant of time, during the transmission period, only one

input should be applied. This is a disadvantage of this circuit.
During the non-transmission period,

V=12
Both the diodes will be in reverse bias which means open circuited.
This makes the output Vo=0V

The main disadvantage of this circuit is that the loading on the control signal increases as the number
of inputs increase. This limitation can be avoided by another circuit in which the control input is given
after the input signal diodes.



Unidirectional diode sampling gate with multiple gating signals

A unidirectional diode coincide ncg gate is shown below.

-

ol :

T +
/Z%Y Dy RLV.
= R.f Ri

0 e 8
Vo Vir and Vg are
v v Vi '
Vi 25V “ “

control signaks

Flg. A unidirectional diode AND gate

Bidirectional Sampling gate:




Emitter coupled Bidirectional Sampling gate using Transistor
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Circuit that minimizes the pedestal

The difference in the output signals during transmission period and non-transmission
period though the input signals is not applied, is called as Pedestal. It can be a positive

or a negative pedestal.

Hence it is the output observed because of the gating voltage though the input signal is
absent. This is unwanted and has to be reduced. The circuit below is designed for the

reduction of pedestal in a gate circuit.

A circuit arrangement that reduces this pedestal is shown in fig.
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When the control signal is applied, during the transmission period i.e. at V;, Q, turns
ON and Q, turns OFF and the V. is applied through R. to Q;.

Whereas during the non transmission period i.e. at V,, Q, turns ON and Q, turns OFF
and the V. is applied through R to Q,. The base voltages —Vgz, and -V, and the
amplitude of gate signals are adjusted so that two transistor currents are identical
and as a result the quiescent output voltage level will remain constant.

If the gate pulse voltage is large compared with the Vg, of the transistors, then each
transistor is biased far below cut off, when it is not conducting. So, when the gate
voltage appears, Q, will be driven into cut off before Q, starts to conduct, whereas at
the end of the gate, Q, will be driven to cut off before Q, starts to conduct.

Hence the gate signals appear as in the above figure. The gated signal voltage will
appear superimposed on this waveform. These spikes will be of negligible value if the
gate waveform rise time is small compared with the gate duration.



Two Diode Sampling gate
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Four Diode Bidirectional Sampling Gate

Bidirectional sampling gate circuit is made using diodes also. A two diode bidirectional
sampling gate is the basic one in this model. But it has few disadvantages such as

*It has low gain

*|t is sensitive to the imbalances of control voltage

*V,, (min) May be excessive

*Diode capacitance leakage is present.

A four diode bidirectional sampling gate was developed, improving these features. A
two bidirectional sampling gate circuit was improved adding two more diodes and two
balanced voltages +v or —v to make the circuit of a four diode bidirectional sampling
gate as shown in the figure
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The gain A of the circuit is given by
A=RC/(RC+R2)xRL/ RL+(Rs/2)

Applications of Sampling Gates

*Sampling scopes

*Multiplexers

*Sample and hold circuits

*Digital to Analog Converters

*Chopped Stabilizer Amplifiers

Among the applications of sampling gate circuits, the Sampling scope circuit is prevalent.






